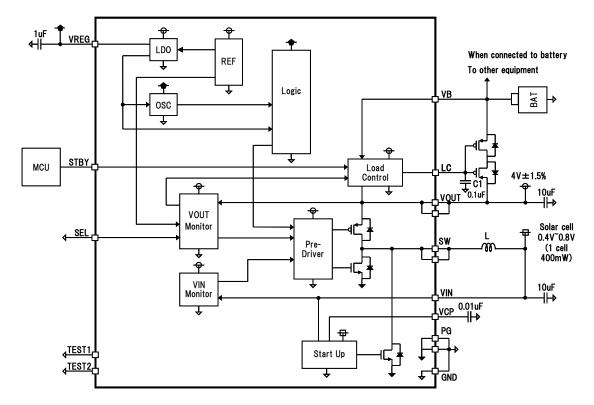


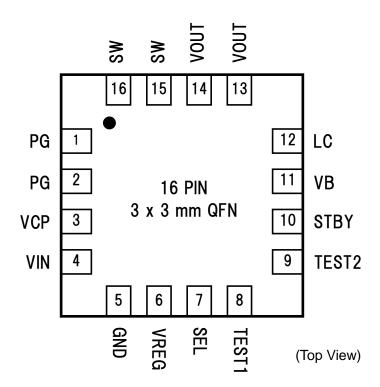
Asahi KASEI MICRODEVICES

AP2200

Step-up DC/DC converter IC supporting 1 or 2 solar cells


OVERVIEW

The AP2200 is a voltage step-up DC/DC converter using the synchronous rectification method to be activated with 1 or 2 solar cells and is ideal for charging lithium-ion batteries or outputting USB VBUS voltage. Also, the MPPT (Max Power Point Tracking) function is embedded in order to maximize the output power from the solar cells.


FEATURES				
Input voltage range	0.4 V to 1.6 V			
 Operating temperature range 	-30 to 85°C			
Input power	Up to 400 mW per 1 cell			
	Up to 800 mW per 2 cells			
 Output voltage 	4.0 V (±2%) per 1 cell			
	5.0 V (±5.0%) per 2 cells			
Control method	Comparator control method			
Rectification method	Synchronous rectification method			
Standby function	When the STBY pin is H, the LC pin is fixed to H			
No battery detect function	When the VB pin voltage decreases, the LC pin is fixed to H			
■ Efficiency	70% (1 cell input, 4.0 V, 50 mA output),			
	80% (2 cells input, 5.0 V, 80 mA output)			
Package	QFN 16 pin			
Application	For charging a lithium-ion battery and			
	USB VBUS source with 1 or 2 solar cells			

BLOCK DIAGRAM

Set output voltage to 4 V

PIN LAYOUT

I/O PINS & FUNCTIONS

Pin No	Pin name	Type (Note1)	I/O (Note2)	Description	Remarks
1	PG	GND	-	DC/DC ground pin	
2	PG	GND	-	DC/DC ground pin	
3	VCP	Α	10	Charge pump pin	
4	VIN	PWR	-	Power input pin	
5	GND	GND	-	Ground pin	
6	VREG	Α	10	Internal regulator output pin	
7	SEL	D		Output voltage switch input pin	L: 4 V / H: 5 V
8	TEST1	-	-	Test pin	(Note3)
9	TEST2	-	-	Test pin	(Note3)
10	STBY	D		Standby input pin	H: standby
11	VB	Α		Battery monitoring input pin	
12	LC	D	0	External switch control pin	
13	VOUT	Α	10	DC/DC output pin	
14	VOUT	Α	10	DC/DC output pin	
15	SW	Α	10	Inductor connect pin	
16	SW	A	10	Inductor connect pin	
EP	GND	GND	-	Tab pin	(Note4)

Table 1 Pin functions

Note 1: A: analog pin, D: digital pin, GND: ground pin, PWR: power pin

Note 2: I: input pin, O: output pin, IO: input and output pin

Note 3: The test pin should be connected to GND.

Note 4: The tab pin may be connected to GND or left open.

ABSOLUTE MAXIMUM RATINGS

Table 2 Absolute maximum ratings

$T_A = 25^{\circ}C$ except as otherwise noted

Item	Symbol	Min	Max	Unit	Remarks
Pin voltage Range	V _{IN1}	-0.3	1.98	V	Note3
(Note1)	V _{IN2}	-0.3	5.5	V	Note4
Input power	P _{IN}		0.8	W	
Operational temperature Range	T _A	-30	85	°C	
Storage temperature Range	T _{STG}	-40	150	°C	
Junction temperature	ΤJ		150	°C	
Power dissipation	PD		0.8	W	

Note 1: The voltage is based on ground pin voltage.

Note 2: If the absolute maximum rating is exceeded, the device may be damaged. Also, normal behavior cannot be guaranteed.

Note 3: VIN pin and VREG pin

Note 4: VCP pin, SEL pin, STBY pin, VB pin, LC pin, VOUT pin and SW pin

OPERATING CONDITIONS

Table 3 Operating conditions

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage range	V _{IN}		0.4		1.6	V
Supply voltage on startup	V _{INSTUP}	-30°C < T _A <-10°C -10°C < T _A <85°C	0.5 0.4	-	1.6	V
Operational temperature	T _A		-30	-	85	С°

Note 1: The voltage is based on the ground pin.

ELECTRIC CHARACTERISTICS

Table 4 Electric characteristics

$T_A = 25^{\circ}C$ except as otherwise noted

Item	Symbol	Condition	Min	Тур	Max	Unit
DC/DC converter						
		T _A = 25 °C, SEL=0	3.96	4.0	4.04	
V _{OUT} voltage (Note3)	V _{TGT}	T _A = -30 to 85°C , SEL=0	3.92	4.0	4.08	V
		T _A = -30 to 85°C , SEL=1	4.75	5.0	5.25	
V _{OUT} hysteresis	V _{TGTHYS}		0.16	0.38	0.60	%
High-side on resistance	RONTOP			0.2		Ω
Low-side on resistance	R _{ONBOT}			0.1		12
Switching frequency	f _{OSC}		450	500	550	kHz
Low-side current limit (Note 2)	I _{LIM}		0.9	1.2	1.5	А
MPPT circuit						
VPM open circuit voltage ratio	MPP	MPP=V _{PM} /V _{OC}	78	80	82	%
Open circuit voltage sampling period	t _{SH}		90	100	110	ms
Monitoring circuit				I		
No battery detect voltage	V _{BLOW}		1.0	-	2.5	V
Low V _{OUT} detect voltage	V _{OL}		2.35	2.65	2.90	V
Logic I/O	01			I		
	V _{OLLC}	I=-1uA	-	-	GND+0.1	
External switch driving		I=1uA				V
voltage	V _{OHLC}	V _{OUT} >V _B	V _{OUT} -0.45	-	-	v
		V _{OUT} <v<sub>B</v<sub>	V _B -0.45			
Standby input voltage	VILSTB		-	-	0.3	v
	VIHSTB		1.0	-	-	v
Output voltage switching	VILSEL		-	-	V _{OUT} *0.3	
input voltage (Note 4)	V _{IHSEL}		V _{OUT} *0.7	-	-	V
Control part						
Internal regulator voltage	V_{REG}		1.62	1.8	1.98	V
Operating frequency	f _{CK}		0.9	1.0	1.1	MHz
Pin current						
		During normal				
VIN pin current	I _{VIN}	operation:	_	_	50	μA
Virtpirreditent	VIN	VIN<1.2V@ T _A >25°C	_		50	μΛ
	-	VIN<1.6V@ T _A <25°C				
VB pin current	I _{VB}	LC=H/L	-	10	20	μA
Internal pull-down resistance						
STBY pin	R _{PDSTBY}		0.5	-	1.5	MΩ
SEL pin	R _{PDSEL}		0.5	-	1.5	MΩ

Note 1: The voltage is based on the ground pin.

Note 2: Not tested in mass production.

Note 3: Only tested at $T_A = 25^{\circ}C$ in mass production.

Note 4: Connect the SEL pin to the VOUT or the GND pin.

1. Operation overview

When the output voltage is entered into V_{IN} from the solar cell(s), the low voltage startup circuit starts to step up the output voltage (V_{OUT}). When V_{OUT} reaches the voltage required for operation of the step-up converter, the low voltage startup circuit stops and the step-up converter starts. After that, the step-up converter increases V_{OUT} to the target voltage (V_{TGT}) and controls V_{OUT} so that it will be stabilized at V_{TGT} . Also, when V_{OUT} reaches V_{TGT} , the step-up converter decreases the LC pin to a low level. For the application where an external PMOS load switch is connected to the LC pin, when the LC pin becomes a low level, the external switch is turned ON to start the power supply to the equipment. However, if one of the conditions below is met, the external load switch is turned OFF to stop the power supply:

• The STBY pin is set to a high level:

The AP2200 has a standby function. When the STBY pin is set to a high level (V_{IHSTB}) by applying voltage, the external load switch is turned OFF to stop the power supply. The step-up converter is still running even in a standby state. When the STBY pin is set to a low level (V_{ILSTB}) by applying voltage, the standby mode is released to start the power supply.

• The VB pin voltage is less than or equal to V_{BLOW} :

The AP2200 has a battery monitoring function. When the VB pin voltage deceases to V_{BLOW} or lower, a battery is assumed to be removed and the external load switch is turned OFF to stop the power supply. When the VB pin voltage increases to V_{BLOW} or higher, a battery is assumed to be reinserted and the external load switch in turned ON to start the power supply. To disable this function, connect the VB pin to the VOUT pin.

• The VOUT pin voltage is less than or equal to V_{OL}:

When the VOUT pin voltage decreases to V_{OL} and lower, the external load switch is turned OFF to stop the power supply. The step-up converter is still running. When V_{OUT} reaches V_{TGT} again, the power supply is restarted.

• When sampling the open circuit voltage (V_{OC}) of the solar cell(s) per the cycle t_{SH},

The AP2200 turns OFF the external load switch as well as pausing the voltage step-up operation. When the sampling of the open circuit voltage comes to an end, the voltage step-up operation resumes. Unless V_{OUT} reaches V_{TGT} again, the external load switch is not turned ON. This prevents back flow from the battery to V_{OUT} to minimize the battery consumption when the power supply from the solar cell(s) decreases, and the step-up converter cannot increase the voltage sufficiently.

2. Output voltage setting

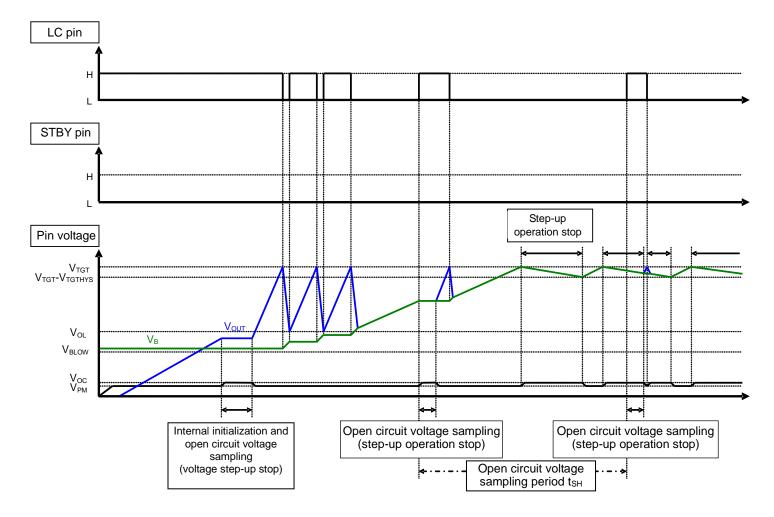
The output voltage (V_{TGT}) is selectable based on the SEL pin. (Table 5)

Table 5 Output voltage setting

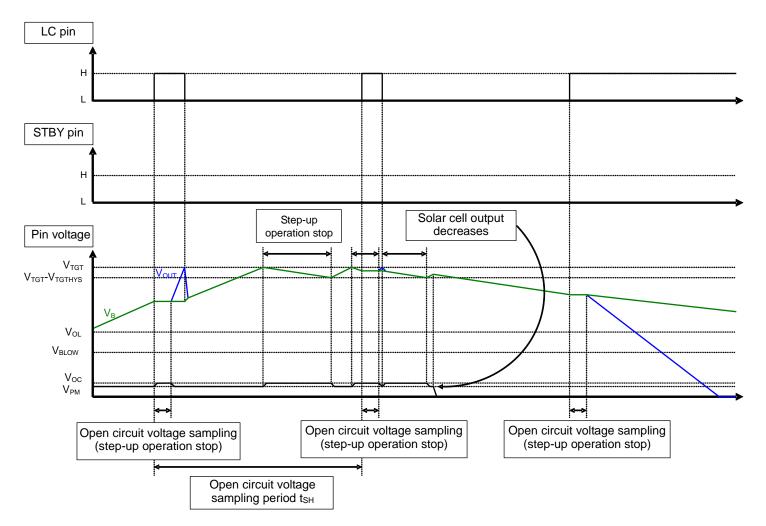
SEL pin level	Output voltage (V _{TGT})
	setting
0	4 V
1	5 V

3. MPPT control

The voltage step-up operation is paused per the cycle t_{SH} and the open circuit voltage (V_{OC}) of the solar cell(s) is sampled. This PWM function first calculates the voltage (V_{PM}) from VOC where the maximum output can be obtained based on the solar cell properties and then controls the step-up converter to obtain the voltage.

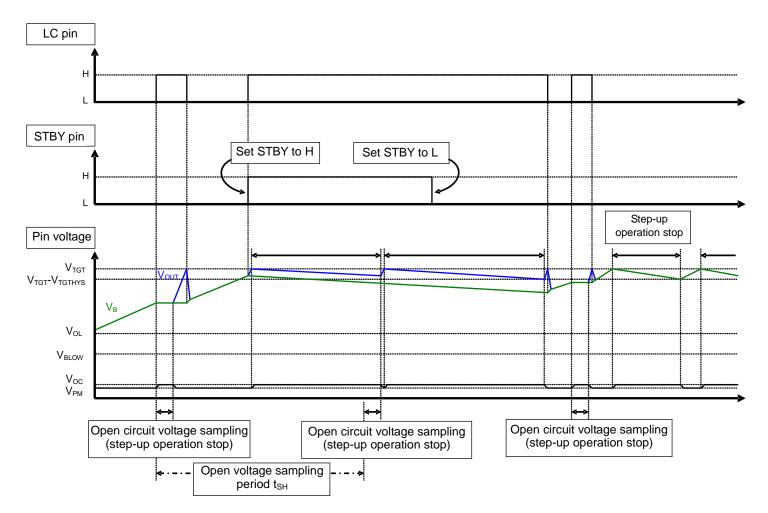

4. Output voltage control

The step-up converter always monitors V_{OUT} . As soon as VOUT reaches the setting voltage (V_{TGT}), the converter stops the voltage step-up. When the voltage step-up operation is stopped, V_{OUT} decreases due to load consumption. When V_{OUT} drops by V_{TGTHYS} or more form V_{TGT} , the step-up operation is restarted.


5. Timing chart

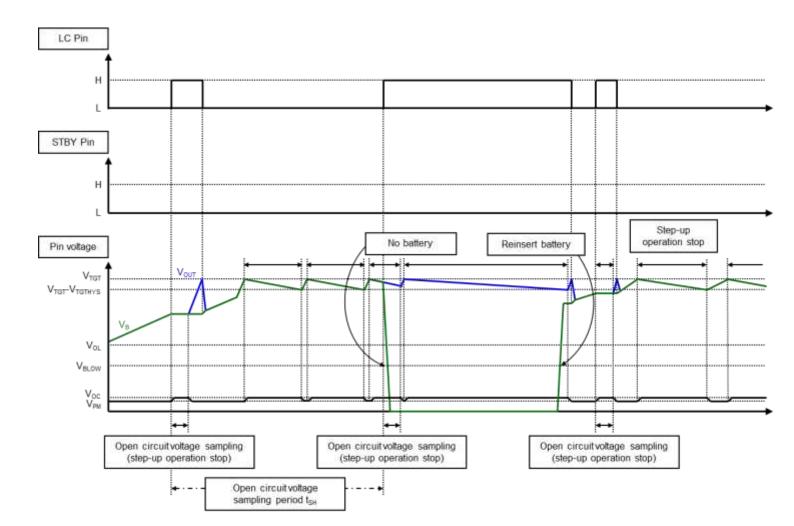
- Note: A timing chart only shows an operation overview and the scale of time and voltage is not accurate.
- 5.1. Normal operation (the voltage increases to V_{OUT} after startup)

5.2. Behavior when solar cell output decreases



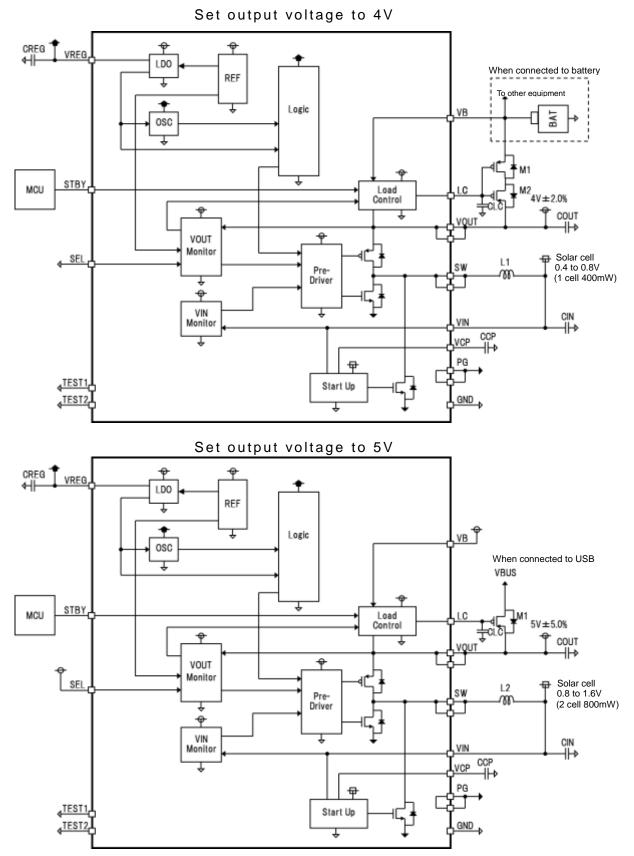
9

[AP2200]


5.3. Behavior when the STBY pin is asserted

[AP2200]

5.4. Behavior when no battery is connected.

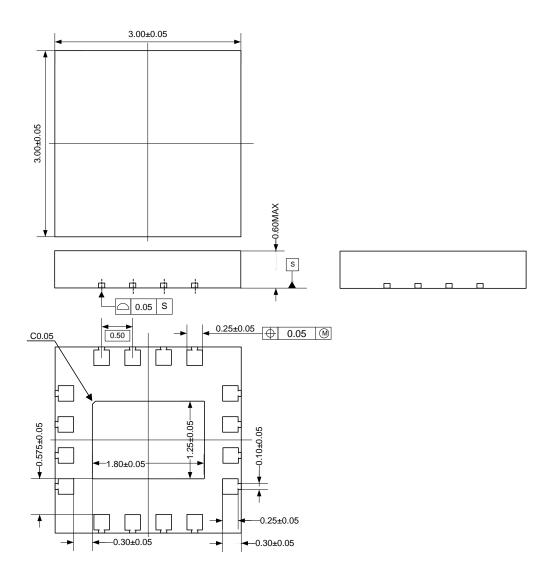


[AP2200]

AKM

REFERENCE DESIGN

• Application schematics


Note1: Select the C1 value to prevent the LC pin voltage from exceeding the absolute maximum rating due to the current through parasitic capacitance of the external load switch.

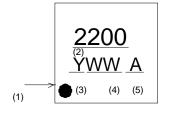

		•		
Item	Symbol	Part number	Manufacturer	Value
Ceramic	CIN	-	-	10µF
Capacitors	COUT	-	-	10µF
	CREG	-	-	1μF
	CCP	-	-	0.01µF
	CLC	-	-	0.1μF
Inductors	L1	SLF6045T-4R7N2R4-3PF	TDK	4.7μΗ
	L2	SLF6045T-6R8N2R0-3PF	TDK	6.8µH
Load	M1,	NTS2101P	On	-
switches	M2		Semiconductor	

Table 6. Reference design list of materials

PACKAGE

MARKING

- (1) Pin 1 Mark
- (2) Part No. : 2200
- (3) Year Code (last 1 digit, ex: "2" for year 2012)
- (4) Week Code
- (5) Management No.

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the
- of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:
- of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

- Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.